Summer Assignment for AP Calculus
Know your Unit Circle inside and out! Especially the radians!
Complete the following sheet below.

Unit Circle, Fill in the blank

www.mathwarehouse.com/unit-circle

CONCEPTS WORKSHEET

Graphical Analysis
Chapter 1 deals with functions and their characteristics. To facilitate a study of functions, it is important to visualize mentally the graphical image of a function when given an algebraic description.
I. Graph each function. Clearly indicate units on the axes provided.

1. $f(x)=x$

2. $f(x)=[x]$
3. $f(x)=\sin x$

4. $f(x)=\cos x$

5. $f(x)=\sec x$
6. $f(x)=2^{x}$
7. $f(x)=\log _{2} x$
8. $f(x)=\frac{1}{x}$

9. $f(x)=\frac{1}{x^{2}}$
10. $f(x)=\sqrt{x}$

11. $f(x)=\sqrt{a^{2}-x^{2}}$

Graphical Analysis

II. Answer the following questions about the indicated functions. In completing the table below use the following abbreviations: R, for the set of real numbers; J, for the set of integers; and N, for the set of natural numbers.

												.			
-															
				$\begin{array}{\|c\|} \hline \underset{y}{\Psi} \\ \hline 11 \\ \underset{\sim}{3} \\ \hline \end{array}$		$\begin{gathered} \stackrel{\rightharpoonup}{n} \\ 0 \\ 0 \\ 11 \\ \underset{\sim}{3} \\ \underset{\sim}{3} \end{gathered}$							$\begin{gathered} \stackrel{4}{5} \\ 11 \\ \underset{\sim}{3} \\ \underset{\sim}{3} \end{gathered}$		

Exponent Rules Review Worksheet

NOTE: Anything to the zero power equals 1!
Product Rule: When multiplying monomials that have the same base, add the exponents.

$$
x^{m} \cdot x^{n}=x^{m+n}
$$

Example 1: $x \cdot x^{3} \cdot x^{4}=x^{1+3+4}=x^{8} \quad$ Example 2: $\left(2 x^{2} y\right)\left(-3 x^{3} y^{4}\right)=2 \cdot(-3) \cdot x^{2} \cdot x^{3} \cdot y \cdot y^{4}=-6 x^{5} y^{5}$
Power Rule: When raising monomials to powers, multiply the exponents.

$$
\left(x^{n}\right)^{n}=x^{m *}
$$

Example 3: $\left(x^{2} y^{3}\right)^{4}=x^{2 \cdot 4} y^{3 \bullet 4}=x^{8} y^{12} \quad$ Example 4: $\left(2 x^{3} y z^{2}\right)^{3}=2^{3} x^{3 \cdot 3} y^{3} z^{2 \cdot 3}=8 x^{9} y^{3} z^{6}$
Quotient Rule: When dividing monomials that have the same base, subtract the exponents.

$$
\frac{x^{m}}{x^{n}}=x^{n-n}
$$

Example 5: $\frac{x^{3}}{x^{-2}}=x^{3-(-2)}=x^{5} \quad$ Example 6: $\frac{5^{6}}{5^{2}}=5^{6-2}=5^{4} \quad$ Example 7: $\frac{36 m^{3} n^{5}}{-9 m n^{4}}=\frac{36}{-9} \cdot \frac{m^{3}}{m} \cdot \frac{n^{5}}{n^{4}}=-4 m^{2} n$

Simplify each of the following. Copy the problem. Work on your own paper.

1) $a \cdot a^{2} \cdot a^{3}$
2) $\left(2 a^{2} b\right)\left(4 a b^{2}\right)$
3) $\left(6 x^{2}\right)\left(-3 x^{5}\right)$
4) $b^{3} \cdot b^{4} \cdot b^{7} \cdot b$
5) $\left(3 x^{3}\right)\left(3 x^{4}\right)\left(-3 x^{2}\right)$
6) $\left(2 x^{2} y^{3}\right)^{2}$
7) $\left(5 x^{2} y^{4}\right)^{3}$
8) $\left(6 x^{4} y^{6}\right)^{3}$
9) $\left(4 x^{3} y^{3}\right)^{3}$
10) $(7 x y)^{2}$
11) $\frac{x^{3}}{x}$
12) $\frac{18 c^{3}}{-3 c^{2}}$
13) $\frac{9 a^{3} b^{5}}{-3 a b^{2}}$
14) $\frac{-48 c^{2} d^{4}}{-8 c d}$
15) $\frac{22 y^{6} z^{8}}{2 y z^{-7}}$
16) $x^{2} \cdot x^{7}$
17) $\left(x^{2}\right)^{7}$
18) $\left(-2 x^{4}\right)^{5}$
19) $2 x^{3}+7 x^{3}$
20) 7^{0}
21) $8 x^{0}$
22) -3^{4}
23) $(-3)^{4}$
24) $6 x^{0} y^{8}-\left(2 y^{2}\right)^{4}$
25) $(x+2 y)(x-2 y)$
26) $\frac{2 x^{3}}{-8 x^{4}}$
27) $\frac{x y^{7}}{x^{3} y^{4}}$
28) $6 x^{5} \cdot 3 x^{5} \cdot x^{0}$
29) $\left(3 s t^{12}\right)^{3}$
30) $\left(\frac{3 m^{2} n^{7}}{m}\right)^{5}$

In Problems 63-82, solve each equation.
63. $7^{r}=7^{3}$
64. $5^{x}=5^{-6}$
65. $2^{-x}=16$
66. $3^{-x}=81$
67. $\left(\frac{1}{5}\right)^{x}=\frac{1}{25}$
68. $\left(\frac{1}{4}\right)^{x}=\frac{1}{64}$
69. $2^{2 x-1}=4$
70. $5^{x+3}=\frac{1}{5}$
71. $3^{x^{3}}=9^{x}$
72. $4^{x^{2}}=2^{x}$
73. $8^{-x+14}=16^{x}$
74. $9^{-x+15}=27^{x}$

Evaluate each expression.

10$) \log _{6} 216 \cdot \log _{5} 125$	
Answer	

